
Using Bitmap Index for Interactive Exploration of Large Datasets∗

Kesheng Wu†, Wendy Koegler‡, Jacqueline Chen‡, and Arie Shoshani†

Abstract

Many scientific applications generate large spatio-
temporal datasets. A common way of exploring these
datasets is to identify and track regions of interest. Usu-
ally these regions are defined as contiguous sets of points
whose attributes satisfy some user defined conditions, e.g.
high temperature regions in a combustion simulation. At
each time step, the regions of interest may be identified by
first searching for all points that satisfy the conditions and
then grouping the points into connected regions. To speed
up this process, the searching step may use a tree based in-
dexing scheme, such as a kd-tree or an octree. However,
these indices are efficient only if the searches are limited
to one or a small number of selected attributes. Scien-
tific datasets often contain hundreds of attributes and sci-
entists frequently study these attributes in complex com-
binations, e.g. finding regions of high temperature yet
low shear rate and pressure. Bitmap indexing is an effi-
cient method for searching on multiple criteria simulta-
neously. We apply a bitmap compression scheme to re-
duce the size of the indices. In addition, we show that the
compressed bitmaps can be used efficiently to perform the
region growing and the region tracking operations. Anal-
yses show that our approach scales well and our tests on
two datasets from simulation of the autoignition process
show impressive performance.

1 Introduction

One method available for scientific data exploration is to
identify and track regions of interest [1, 7, 14]. The goals
are to identify regions for further analysis and to visualize
their evolution. In a spatial-temporal dataset, such as the
results from a combustion simulation [5, 6], the physical
phenomena to be studied can be described as a number of
scalar or vector fields on a domain, e.g. temperature and

∗This work was supported by the Director, Office of Energy Re-
search, Office of Laboratory Policy and Infrastructure Management,
of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

†Lawrence Berkeley National Laboratory, Berkeley, CA. Email:
{KWu,AShoshani}@lbl.gov.

‡Sandia National Laboratories, Livermore, CA. Email:
{WKoegler, JHChen}@ca.sandia.gov.

velocity throughout a volume of air. Regions of interest
are then identified as meeting some conditions based on
these properties, e.g. regions in the volume where the air
is very hot. Datasets can have hundreds of attributes such
as pressure, concentrations, etc. Regions of interest may
be defined based on any of the attributes in the dataset as
well as combinations of different attributes. A scientist
usually has to explore a number of different conditions
before proceeding to subsequent analysis steps.

The full tracking process, called feature tracking, is il-
lustrated by Silver and Wang [14]. The spatio-temporal
dataset is organized on the top level according to time. For
each time step, snap shots of the fields are recorded. These
fields are usually discretized and recorded as attribute val-
ues on grid points or cells. In [14], a region of interest
was defined to be a connected region where an attribute is
above a specified threshold value. A region of this type
is also known as the thresholded region. The thresholded
regions were identified in each time step and then tracked
through time by comparing overlaps of regions from con-
secutive time steps. An octree was used to facilitate the vi-
sualization and identification of regions of interest. Since
the octree is based on a partition of space, searching for
points that satisfy conditions on attribute values typically
requires one to examine a large portion of the tree. For
this reason, identifying regions of interest using an octree
is considered an O(N) process, where N is the total num-
ber of points. A number of alternative approaches scale
better, as we shall discuss next.

For visualization purposes, identifying a thresholded
region is equivalent to identifying its boundary. There-
fore, we may choose to use an isocontouring algorithm
to determine the boundary instead of identifying the en-
tire region. There are efficient algorithms for generating
isocontours for visualization. For example, the NOISE
algorithm is shown to have the worst case complexity
of O(

√
N + s), where s is the size of the isocontour

[8]. More recent researches have demonstrated that the
optimal complexity of O(s) is achievable with suitable
preprocessing [4, 11]. Although potentially faster than
the thresholded region algorithm [14], isocontouring al-
gorithms only identify points on the boundary. Additional
work is required to identify all the interior points.

The process of identifying regions of interest can be di-
vided into two steps. The first step is to identify points

1

LBNL-52535

that satisfy the specified conditions and the second step
is to group these points into connected regions. In later
discussions, we refer to the first step as the searching step
and the second as the region growing step. After the re-
gions have been identified in each time step, the last step
of feature tracking is to determine the relationship among
the regions between time steps. We refer to this step as
region tracking.

One important limitation of the searching schemes
employed by the thresholded region algorithm [14] and
the isocontouring algorithms [4, 8, 11], is that they are
only designed for regions of interest defined on one at-
tribute. To remove this limitation, a number of multidi-
mensional indexing schemes can be applied to speed up
the search step. For example, Shi and Jaja (2002) ap-
plied a packed Hilbert R-Tree to an earth science dataset
[12]. In database terms, each grid point is a record, and
the spatial coordinates and the associated fields are at-
tributes of the record. The algorithm used by Shi and Jaja
can process multi-attribute conditions. Its time complex-
ity is O(v), where v is the volume of the regions of in-
terest. However, the packed Hilbert R-Tree and most of
the multidimensional indexing schemes either suffer from
the “curse of dimensionality” or are only efficient when
queries involve all attributes. The “curse of dimensional-
ity” refers to the fact that their effectiveness rapidly de-
teriorate as number of attributes increases. Most of them
are only useful when the number of attributes are small,
say ≤ 10.

Most multidimensional indexing schemes reorder the
records according to their attribute values. Although this
reordering is crucial to achieve efficient search operations,
it causes the region growing procedures to be very slow.
The reordering of records according to values destroys
spatial relation among the neighbors. This relation essen-
tially has to be recovered during region growing. For ex-
ample, in Shi and Jaja’s study [12], the search step is quite
fast (∼ 0.1 seconds), but the region growing step is much
slower (2–4 seconds).

Among the multidimensional indexing schemes, the
bitmap indexing scheme is known to not suffer from the
“curse of dimensionality” and is especially efficient when
the queries do not involve all of the attributes [9, 19].
More importantly, the bitmap index does not require one
to reorder the records in a particular way, thus we can
keep the records ordered to preserve neighborhood rela-
tion for the region growing step. In this paper, we apply a
compressed bitmap index to the feature tracking problem.
Applying the bitmap index to the searching step is rela-
tively straightforward. The crucial point of this paper is
that the compressed bitmaps can also be used efficiently
for region growing and region tracking. Our complex-
ity analyses show that we achieve the optimal complexity

in all three steps of the feature tracking process. Tests
on two sets of data from autoignition process verifies the
complexity analyses. On a 33 GB dataset, it takes on the
average 10 seconds to identify and track regions of inter-
ests defined on four different attributes. Even in the worst
cases, it takes less than a minute.

The remaining of this paper is organized as follows. In
Section 2, we review the basic concepts of bitmap index-
ing and give the optimal scheme for the searching step. In
Section 3, we review the compression scheme used and
give the basic reasons that it can perform bitwise logical
operations efficiently. The most important point of this
section is that we can represent regions of interest com-
pactly using O(s) words. Since the optimal bitmap index
allows us to read only one compressed bitmap to answer a
threshold condition, this searching step has a complexity
of O(s) in both space and time. In Section 4, we dis-
cuss how the region growing process can be implemented
in the same complexity. We also show experimental ev-
idence to support the theory. The region tracking proce-
dure used in our tests is discussed in Section 5. The over-
all performance characteristics of the bitmap based fea-
ture tracking algorithm is discussed in Section 6. In sec-
tion 7, we summarize the current work on uniform grids
and discuss how we may extend the algorithms to irregu-
lar grids and adaptive grids.

2 Bitmap indexing

The bitmap index scheme has a long history in the
database field [9, 10, 2]. It is very efficient for data ware-
housing applications where the data records are read-only
and the queries usually produce a large number of data
items [2, 3, 19]. The feature tracking problem is similar
to the data warehousing applications. In both cases, the
data are read-only and the results of queries are usually
large. Another reason for considering a bitmap index is
that it does not require one to reorder the records. We
can simply leave the records in the order used in the com-
putational procedure that generated the data. Compared to
those that require reordering, it requires less time to create
a bitmap index. In addition, the existing order of records
is well-suited for the region growing and region tracking
steps.

A bitmap index can be considered as a set of precom-
puted answers to some simple conditions. Let X be an
integer attribute with values in the range of 0 to 9. The
range-encoded bitmap index precomputes all answers to
the query of the form “X ≥ p”, where p is an integer
[2, 3]. Let N denote the number of records, each bitmap
contains N bits of 0s and 1s. For the bitmap represent-
ing “X ≥ 1”, the ith bit is 1 if the attribute X in the ith
record is greater than or equal to 1, otherwise the bit is 0.

2

In the bitmap index for X, there are 10 bitmaps each cor-
responding to one distinct value of X, 0 to 9. For any user
specified condition of the form “X ≥ p”, to find all the
points satisfying the condition, we only need to read one
of the bitmaps. Clearly, the size of this bitmap determines
the time and space complexity of this searching step. In
the next section, we discuss the use of compression to re-
duce bitmap sizes. In the remainder of this section, we
discuss how to deal with continuous values and conditions
involving multiple attributes.

A bitmap index is usually defined for one attribute,
however it is easy to process conditions involving more
than one attribute. For example, with two range-encoded
bitmap indices for both X and Y , to answer the query
“X ≥ px and Y ≥ py” one simply uses the indices for X
and Y to first get the partial solutions to “X ≥ px” and
“Y ≥ py”, and then performs a bitwise AND operation
on the two partial solutions.

The bitmap indexing scheme can also be used for at-
tributes with continuous values. In scientific applications,
these attributes are typically represented as floating-point
values. The most straightforward option is to build one
bitmap for each distinct value. This option ensures that
all possible threshold conditions can be answered by read-
ing one bitmap, however, it may generate a compressed
bitmap index that is larger than a B-tree index. To reduce
the size of the bitmap index, we usually bin the floating-
point values [13, 18]. For example, assuming an attribute
Z can be of any real value between zero and one, we may
build a range-encoded bitmap index for the following set
of conditions, Z ≥ 0, Z ≥ 0.1, Z ≥ 0.2, . . ., Z ≥ 0.9.
This corresponds to having 10 bins with bin boundaries 0,
0.1, and so on. In this case, the performance of searching
step depends critically on the selection of the bin bound-
aries. For example, if the threshold is 0.85, i.e., the query
condition is Z ≥ 0.85, all records satisfying Z ≥ 0.9
definitely satisfy the query condition, but all the records
satisfying Z ≥ 0.8 but not Z ≥ 0.9 have to be exam-
ined. If commonly used conditions involving an attribute
are known, it is possible to devise an set of optimal bound-
aries to minimize the number of records to be examined.
In the cases where a human explorer is expected to use
the system, there are certain heuristics for maximizing the
chance that a user query fall on a bin boundary. For ex-
ample, a human explorer is more likely to enter a condi-
tion like “Z ≥ 0.1” than “Z ≥ 0.1001”, unless of course
0.1001 happens to be a magic number in the particular
application. In the autoignition datasets, most of the at-
tributes have real values and the bin boundaries are typi-
cally of the form 10−8, 2×10−8, . . . , 10−7, 2×10−7, and
so on.

In general, users can select their own preferred bin
boundaries when creating the bitmap indices. By select-

ing bin boundaries that fit a specific application, condi-
tions involved in identifying thresholded regions can be
answered by retrieving one bitmap from a bitmap in-
dex. This process is expected to take O(N) space and
O(N) time. However, it can be significantly reduced
if the bitmaps are compressed. Most of the commonly
used bitmap compression schemes are based on the run-
length encoding. If the physical problem has continuity in
space, then preserving the neighborhood relation among
the records tend to also improves the compressibility of
the bitmaps. For a simple threshold condition on one
attribute, we can show that the size of the compressed
bitmap is O(s), where s is the size of the boundaries of
the thresholded regions.

3 Bitmap compression

As mentioned in the previous section, compression is
the crucial technique that reduces the complexity of the
search operations when using the bitmap index. In this
section, we demonstrate that on a uniform grid, the com-
pressed bitmap size is proportional to the size of the
boundaries of the regions of interest, i.e., O(s). To find
thresholded regions using a range-encoded bitmap index
we simply retrieve an appropriate bitmap from the bitmap
index. If the size of this bitmap is O(s) bytes, the com-
plexity of the search operation is theoretically comparable
to the best algorithm for identifying the boundaries (iso-
contour) of these regions. The following analyses are for
3D uniform grids and the illustrations use a 2D grid.

On a uniform 3-D grid, each grid point can be marked
with its indices along x, y, and z directions, i, j, and k.
A simple way of ordering these grid points is the raster
scan ordering. Let the grid size be nx × ny × nz , and
the indices i, j, and k go from 0 to nx-1, ny-1 and nz-1
respectively. The global index of a grid point at (i, j, k) is
i+j∗nx+k∗nx∗ny using the raster scan order. A number
of connected regions can be recorded by marking whether
a point belongs to one of the regions. Using the bitmap
index, the solution from the searching step is a bitmap of
N bits where the points inside the regions of interest are
marked with 1.

Let’s define the order line to be a line going through all
the grid points in order 0, 1, . . ., N − 1. The boundary
of the regions will cut the order line into many line seg-
ments. A segment that contains grid points within the re-
gions corresponds to a group of 1s in the bitmap. A group
of consecutive identical bits is called a fill. A fill with only
0s is called a 0-fill and a fill with only 1s is called a 1-
fill. The 0-fills correspond to line segments outside of the
regions of interest and the 1-fills correspond to line seg-
ments inside the regions. If the points of the regions fall
on sl line segments, the bitmap representing the regions

3

line
order

X

line segments

0

1

2

3

4

6

7

8

5

j=

Y

outline of the region

i= 0 10987654321

Figure 1: A 2-D regular grid (11 × 9).

line
order

X
i=

0

P2 P3

P1P0

line segments

outline of the region

Y

j=

5

8

7

6

4

3

2

1

109876543210

Figure 2: A 2-D regular grid (11×9) partitioned into four
blocks.

contains no more than sl 1-fills separated by no more sl-1
0-fills. There might be two additional 0-fills, one at the
beginning and one at the end of the bitmap. Altogether
there is a maximum of 2sl+1 fills. Using the run-length
encoding, each fill can be represented in one word. A to-
tal of at most 2sl+1 words may be used. Many of the
commonly used bitmap compression schemes are based
on the run-length encoding, therefore using one of these
schemes the compressed bitmap should use O(sl) words.
Figure 1 shows an example of a 2-D grid. Only one con-
nected region is shown, but it is not a convex region. In
this example, there are eight line segments, sl = 8, and 17
fills in the bitmap representing the region. The run-length
encoding of this bitmap is shown in Figure 3.

Figure 1 26*0, 3*1, 6*0, 2*1, 2*0, 1*1, 6*0, 3*1,
1*0, 1*1, 6*0, 5*1, 7*0, 4*1, 8*0, 3*1,
15*0

Figure 2 16*0, 2*1, 2*0, 2*1, 4*0, 3*1, 11*0,
1*1, 4*0, 1*1, 4*0, 1*1, 6*0, 4*1, 3*0,
3*1, 4*0, 2*1, 6*0, 1*1, 4*0, 1*1, 4*0,
1*1, 9*0

Figure 3: The run-length encoding of the bitmaps repre-
senting the regions shown in Figures 1 and 2.

Figure 1 0000001C 0640E81F
00F00E00 00000000

Figure 2 0000661C 0021081E
1C302108 00000000

Figure 4: The Word-Aligned Hybrid (WAH) encoding of
the bitmaps representing the regions in Figures 1 and 2.
Code words are expressed as hexadecimal digits. In both
cases, the last word contains only six useful bits.

To improve the efficiency of logical operations on the
compressed bitmaps, we use a compression scheme called
the Word-Aligned Hybrid (WAH) code [15, 16, 17]. The
WAH scheme differs from the basic run-length encoding
in two ways. First, it only records long groups of 0s or 1s
using the run-length encoding, the short groups are rep-
resented literally. Second, it requires the groups to be of
certain size so that operations on the compressed data are
efficient. If a word contains 32 bits, WAH first groups the
bits of a bitmap into 31-bit groups. Consecutive groups
with only 0s or 1s are encoded in one word called the
fill word. The remaining groups are represented literally,
where the 31 bits plus a flag bit are stored in a 32-bit word.
In the worst case, the 2sl+1 fills might take 4sl+3 words
in WAH because each fill may turn into one literal word
plus a fill word and the last few (N modulo 31) bits re-
quire a word to store. Typically, it takes less space than
the run-length encoding scheme, especially if many of the
groups are small. For the example shown in Figure 1,
WAH encodes all bits in literal words and only four words
are needed instead of 17. The WAH compressed version
is shown in Figure 4. In this case, there are only six useful
bits in the last word.

We say a point in a region is exposed if one of its neigh-
bors is outside of the region. We define the boundary size
s of a region to be the number of points exposed. For most
line segments, only their two end points are exposed. This
suggests that the boundary size is about twice the number
of line segments, s ∼ 2sl. The example shown in Fig-
ure 1 has 16 points exposed to the outside while it has

4

eight line segments. A line segment can have more than
two points exposed if the whole or part of the line segment
is exposed. For example, the line segment with j = 2 in
Figure 1 has three exposed points. It may contribute less
than two points if it has only one point. For regions with
complex outlines, we would expect s to be slightly greater
than 2sl. A connected region with many single-point line
segments along the x-axis should be rare. In short, an al-
gorithm with complexity of O(s l) also has a complexity
of O(s).

The datasets we used were computed on a parallel ma-
chine and their grids were distributed to many processors,
one piece of the grid, or a block, to each processor. In
this case, the points and the blocks form a two-level grid.
Within each level, the points are numbered in the raster
scan order, see an illustration in Figure 2. This makes
the order line more complex and increases the number of
line segments inside a region, and therefore increase the
size of the compressed bitmaps. The region and the grid
shown in Figure 2 are exactly the same as shown in Fig-
ure 1, except that the domain has been partitioned into
four nearly equal-size blocks. By partitioning the grid into
four blocks, the number of line segments increases from 8
to 12. In the bitmap, the number of fills increases from 17
to 25. We may reduce the size of the bitmaps by reorder-
ing the grid points to follow the simple raster scan order,
however we are not sure whether the extra preprocessing
time is worthwhile at this time.

Logical operations on WAH compressed bitmaps can
work directly on the compressed data and generate com-
pressed answers. Because of this, the time to perform
these operations is proportional to the sizes (bytes) of the
bitmaps involved [15, 16, 17]. Proving this in detail is be-
yond the scope of this paper, the following example illus-
trates the main points of the proof. Let A be the bitmap
representing the region shown in Figure 2 and B be the
bitmap representing a region the occupying the first block
only. The two compressed bitmaps are shown in Figure 5.
The last words for both bitmaps contain six 0 bits and are
not shown to save space. In B, the 62 0-bit in the mid-
dle is represented by a WAH code word 80000002. The
first bit is 1, indicating it is a fill word. The second bit is
0, indicating all the bits of the fill are 0. The remaining
30 bits contains the integer 2, indicating the fill consists
of 2 31-bit groups. In other word, the fill is 62 bits long.
The procedures to perform bitwise logical operation can
directly read these code words and generate code words of
the results. In general, to generate one word of a result, at
least one word of the two operands is consumed. For in-
stance, the first code word of A&B is generated by using
the bitwise AND operator on the first code words from A
and B. One word from A and one word from B are con-
sumed in this case. The second code word in A&B is the

A 0000661C 0021081E 1C302108
B 7FFFFFFE 80000002

A&B 0000661C 80000002
A | B 7FFFFFFE 0021081E 1C302108

Figure 5: Examples of bitwise logical operations on WAH
compressed bitmaps.

same as that of B because it is a fill of 0 bits. There is no
need to examine the two corresponding code words of A.
In this case, one word from B and two words from A are
consumed to generate one word of the result. If there are
nA words in A and nB words in B, in the worst case, a bit-
wise logical operation may generate nA+nB words in the
result. Because of this linear relation, bitwise logical op-
erations on WAH compressed bitmaps have the potential
to outperform the same operations on the uncompressed
bitmaps. Our earlier tests demonstrated that this is indeed
the case [15, 16, 17]. Overall, using the WAH compres-
sion scheme not only reduces the storage requirement, but
also improves the computational efficiency.

An additional benefit of using WAH compression is
that we can generate the bitmap indices efficiently. Using
WAH compression, it is possible to only insert bits that are
1 when creating a bitmap index. In most cases, we found
that generating the (equality encoded) bitmap index 1 has
the computational complexity of O(N log(b)), where b
is the number of bitmaps generated. This is significantly
better than the complexity of generating an uncompressed
bitmap index, O(Nb). It is also better than multidi-
mensional indexing schemes that require sorting. These
schemes have a complexity of at least O(N log(N)).

4 Region growing

The searching step generates a bitmap representing all
grid points satisfying the specified conditions. In previ-
ous sections, we have shown that this bitmap can be pro-
duced and stored efficiently. For visualization purposes,
we need to produce the boundaries of all connected re-
gions. On uniform grids, the beginning and the end of ev-
ery group of 1s must correspond to the two end points of a
line segment in the regions of interest. If the user does not
demand a high quality border or the grid is fine enough,
simply displaying these end positions might be sufficient.
However, to display a smooth boundary, we need to de-
termine the points that are exposed and their neighbors

1Our favorite range-encodedbitmap index can be generated from the
equality encoded index by b − 1 bitwise OR operations. Our observa-
tion is that the logical operation time is much smaller than the time to
generate the equality encoded index.

5

outside so that we can perform the necessary interpola-
tion. This would require us to associate each grid point to
a connected region. A straightforward approach is likely
to yield an algorithm with complexity of O(v) because it
has to work on each grid point [12]. However, on uniform
grids, we can directly work with the line segments instead
of working with each individual grid point. This reduces
the complexity of the region growing step to O(s).

For data involving uniform grids, converting a com-
pressed bitmap into lists of line segments is a straight-
forward task. This work involves visiting every word that
represents 1s, converting the global index of the first 1
into its i, j, k coordinates, and determining the number
of 1s that follow. Since the number of words containing
1s is proportional to the number of line segments, s l , this
conversion process has a time complexity of O(sl). As
we decode the compressed bitmap, the line segments are
discovered in order of j and k, and can be used in the
following comparisons without any addition work.

After the line segments are identified, the next task is
to generate a list of pointers to these segments for each
connected region. This process can go according to the
indices j and k. For each grid line defined by (j, k),
we need to compare the line segments on it against those
on (j-1, k) and (j, k-1) and possibly (j-1, k-1) depend-
ing on the definition of neighbors. Because the line seg-
ments along each (j, k) are ordered and do not over-
lap, determining whether two segments from (j-1, k) and
(j, k) are connected requires at most two comparisons.
Let sj,k be the number of line segments on grid line (j,
k), then the number of comparisons required to identify
whether segments on line (j, k) are connected to seg-
ments on line (j-1, k) is proportional to s j,k + sj−1,k.
This operation is repeated for two other lines. The over-
all complexity of matching segment on line (j, k) is
O(3sj,k+sj−1,k+sj,k−1+sj−1,k−1). Since sl =

∑
sj,k ,

the overall complexity of grouping line segments into con-
nected regions is O(sl).

While comparing line segments from different grid
lines, we can also determine what part of a line segment
is exposed to the outside. This is a fixed amount of work
each time two line segments are compared. Therefore
this does not change the complexity of the region grow-
ing algorithm. Displaying the positions of all the exposed
points should produce a better boundaries than simply dis-
playing the end points of the line segments. However, if
this is still insufficient, we may further generate a smooth
boundary through interpolation. This requires one to iden-
tify the outside neighbors of the exposed points and per-
form interpolation. This additional work is also linear in
the number of grid points exposed. Therefore, displaying
a smooth boundary also requires O(s) time.

In preparation for the feature-tracking step, we convert

0 2000 4000 6000 8000 10000 12000
0

0.005

0.01

0.015

number of line segments

re
g

io
n

 g
ro

w
in

g
 t

im
e

(s
ec

)

a) 600 × 600 grid (partitioned into 32 blocks)

0 0.5 1 1.5 2 2.5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

number of line segments

re
g

io
n

 g
ro

w
in

g
 t

im
e

(s
ec

)

b) 1344× 1344 grid (partitioned into 256 blocks)

Figure 6: Time used by the region growing procedure
plotted against the number of line segments in each test
case. Each test case is shown as a green point, the red
lines are based on linear regression.

the lists of line segments back to compressed bitmaps. In
this case, each bitmap represents the grid points belonging
to one connected region. We have implemented a proce-
dure that takes O(sl) time. The size of a bitmap is propor-
tional to the number of line segments it represents. Since
the region growing step does not change the number of
line segments, the total size of the compressed bitmaps
produced should be about the same as the size of the input
bitmap, i.e., their total size is O(sl).

Overall, the region growing process takes one bitmap
and generates a number of bitmaps, one for each con-
nected region. Most of the steps in this process have
a complexity of O(sl) and others have a complexity of
O(s). Since s ∼ 2sl, the total time complexity is O(s)
and so is the memory requirement.

To verify that the time required by the region growing

6

procedure is proportional to the number of line segments,
we have collected timing results from a large number of
different test cases (see details in Section 6). The results
are plotted in Figure 6. We observe that the points fall
close to the regression lines. Given that time reported is
wall-clock time and the figure contains more than 66,000
test cases on two sets of autoignition data, it is remarkable
that there are so few outliers. Also note that the datasets
use distributed grids, see Figure 2. This verifies that the
linear relation holds for nontrivial grids. Another impor-
tant observation is that the slopes of the two regression
lines are remarkably similar, 10−6 and 1.25× 10−6, even
though the two grids are significantly different in size.
This indicates that the coefficients in the linear relation do
not depend on the grid size and that the time complexity
of the region growing algorithm is indeed O(s l).

5 Region tracking

When analyzing a spatio-temporal dataset, one important
task is to track the evolution of the regions of interest
in time [14]. One common approach is to determine the
correspondence among the regions from the neighboring
time steps based on the spatial overlap of regions. The
most time consuming part of this process is the compu-
tation of overlaps. Let v1 and v2 denote the volumes
of two regions to be compared. The straightforward ap-
proach of comparing every pair of points has the complex-
ity of O(v1v2). Given that we represent each region as a
compressed bitmap, for uniform grids, computing over-
lap is equivalent to counting the number of 1s in the re-
sult of a bitwise AND operation between two bitmaps.
Let s1 and s2 denote the boundary sizes of the two re-
gions, the sizes of the compressed bitmaps are O(s1) and
O(s2). Since we can directly operate on the compressed
bitmaps, the complexity of the bitwise logical operation
is O(s1 + s2). The result of this is also compressed and
its size is also O(s1 + s2). Because WAH is a simple
compression scheme, counting the number of 1s is a lin-
ear operation. Overall, computing overlap between two
regions has a complexity of O(s1 + s2) both in space and
in time. Given that the regions are represented in O(s1)
and O(s2) bytes, computing the overlap in O(s1 + s2)
time and space is optimal because one must examine ev-
ery byte representing the two regions to determine their
overlap.

In our test software, we use the overlaps to define a
global identifier (an integer) for each connected region
[7]. At the first time step, the regions are arbitrarily num-
bered. The regions of time step p are compared to the
regions of time step p-1, a region in the later time step
takes on the number of the region that it has the maximal
overlap with; a region that does not overlap with any in

data index create
grid size time size size index

steps (MB) (MB) (sec)
600× 600 69 795 495 621

1344× 1344 335 19,364 3,351 6,912

Figure 7: Basic information about the compressed bitmap
indices on eight attributes of the autoignition data.

the previous time step is again numbered arbitrarily. This
is a very simple region tracking algorithm. The purpose of
this test is to demonstrate that the bitmap based approach
can compute the overlaps efficiently.

In previous sections, we have compared our approach
with the isocontouring algorithm. Most isocontouring al-
gorithms cannot be used easily for region tracking be-
cause they do not provide information about the interior
of the regions. However, our approach can handle fea-
ture tracking with ease because a compressed bitmap is a
compact representation of all points in the regions.

A byproduct of our region growing algorithm is that
it can produce bounding boxes easily. These bounding
boxes can be used to reduce the overall region tracking
cost since we only need to compute the overlap of regions
whose bounding boxes overlap.

6 Performance on autoignition data

This work was motivated by a need to efficiently analyze
the datasets produced from a direct numerical simulation
of hydrogen-oxygen autoignition process [5, 6]. We have
applied our bitmap indexing software to identify and track
the regions of interest on two datasets from this applica-
tion. Here we report some timing results.

Two sets of data have been used to test the program.
Both sets are produced on 2D models and both are pro-
duced on uniform grids partitioned into a number of
blocks. The smaller dataset uses a 600×600 grid and con-
tains 69 time steps. The larger dataset uses a 1344× 1344
grid and contains 335 time steps. Figure 8 shows the re-
gions of interest from two different time steps of the larger
dataset. The outlines are labeled using the region tracking
algorithm describe in the previous section.

For our performance test, we used randomly generated
conditions on eight chemical species involving hydrogen
and oxygen. We built indices for these eight attributes.
The indices built were the range-encoded bitmap indices
and 100 bins were used for each attribute. The total size of
the indices and the time needed to create them are listed
in a table in Figure 7. In this table, the data size refers
to the total size of the eight attributes indexed, not the

7

Figure 8: Regions of interest (HO2 > 10−7 on HO2 back-
ground) at selected time steps.

total size of all attributes. The total size of the smaller
dataset is about 1.6 GB and the larger one is about 33
GB. Without compression, the bitmap index sizes would
be more than three times of the size of the original data,
which is close to the sizes of B-tree indices on the same
set of attributes. However, the sizes of our compressed
indices are significantly smaller than the data sizes.

The timing results reported in Figure 7 are wall clock
time measured on a Sun e-450 machine. It uses an Ultra-
SPARC II CPU with a clock rate of 450 MHz and 4 GB
of memory. The files reside on a disk suite including five
disks. We can usually expect about 20 MB/s throughput
from the disk system. The index creation time should be

40 45 50 55 60 65 70
1

1.5

2

2.5

3

3.5

4

4.5

5

se
ar

ch
 t

im
e

(s
ec

)

1−attribute
2−attribute
3−attribute
4−attribute

a) 600 × 600 grid, 69 time steps

150 200 250 300 350
0

5

10

15

20

25

30

35

40

se
ar

ch
 t

im
e

(s
ec

)

1−attribute
2−attribute
3−attribute
4−attribute

b) 1344× 1344 grid, 335 time steps

Figure 9: Search time used by the compressed bitmap in-
dexing scheme to answer queries involving different num-
ber of attributes. Each test case is shown as a symbol in
the plot, the lines with the same color as the symbols are
based on linear regression.

linear in the data size. However, because the larger dataset
produced relatively smaller compressed bitmaps, the time
needed to create indices for the larger dataset was only 11
times that of the smaller dataset even though their sizes
differ by a factor of about 25.

Figure 9 shows the time used by the search step. The
time reported is the time used to search through all the
time steps in a dataset. More than 200 tests were per-
formed on each dataset2. To reduce clutter, only test cases
that require more than one second on the smaller dataset
and five seconds on the larger dataset are shown. The hor-

2On the large dataset, since each test is applied to all 335 time steps,
this generates a total of more then 66,000 test cases for the region grow-
ing procedure

8

a) 600 × 600 grid, 69 time steps
att search grow track

1 1.06 0.22 0.02
2 1.67 0.17 0.01
3 2.12 0.14 0.01
4 2.62 0.14 0.01

b) 1344 × 1344 grid, 335 time steps
att search grow track

1 5.71 2.05 0.12
2 7.39 1.24 0.12
3 8.92 0.58 0.11
4 10.30 0.47 0.10

Figure 10: The average time (seconds) of different ran-
dom tests.

a) 600 × 600 grid, b) 1344 × 1344 grid,
69 time steps 335 time steps

att search total
1 1.91 2.51
2 3.70 3.82
3 3.98 4.13
4 4.62 4.77

att search total
1 19.41 26.72
2 20.33 26.08
3 22.68 23.42
4 35.30 35.95

Figure 11: The test cases that used the maximal amount
of total time (seconds).

izontal axes in the figure are the number of time steps
containing nonempty regions of interest. The tests are
conducted using conditions of the form “X > a and Y
> b” by randomly selecting the attributes and the thresh-
old values. The linear regression lines are presented not
to suggest a linear relation, but merely to guide the com-
parisons among the queries involving different numbers
of attributes.

Figure 10 shows the average time used by the three
steps of feature tracking, searching, region growing and
region tracking. In most test cases, the time required by
the search step is a factor of 5–10 larger than the time re-
quired by the region growing step which is in turn about a
factor of 5–10 larger than the time required by the region
tracking step. This is dramatically different from perfor-
mance data reported in the literature [12] where the region
growing time is 20–40 times that of searching time. This
is because the bitmap indexing scheme allow the data to
be in an order that is efficient for region growing. Most
other multidimensional indexing schemes do not allow
this option.

As the number of attributes in a query increases, the
searching time generally increases. We expect the aver-
age search time to be proportional to the total index size.

record oriented 75
attribute oriented 5

Figure 12: Time (seconds) used to search the smaller
dataset without an index.

The total size of indices for the larger dataset is about 6.7
times that of the smaller one. The average search times
only differ by a factor of about 5. This is close to what
we expected. The time required by region growing step
and the region tracking step decreases as the number of
attributes in a query increases. This is because the condi-
tions involving more attributes typically produce smaller
regions of interest.

Figure 11 shows the maximum time used by the ex-
treme test cases. The total time is less than 40 seconds
in all test cases on the large dataset. Much of this time
is spent in waiting for the disk system to respond to read
requests.

For a typical thresholded region defined on one at-
tribute, the search step on the smaller dataset takes less
than two seconds and the search step on the larger one
takes less than 20 seconds. As more attributes are spec-
ified, the worst-case time grows slower than linear. For
example, for regions of interest defined on four attributes,
it takes less than five seconds on the smaller dataset and
less than 40 seconds on the larger dataset, see Figures 9
and 11.

Figure 12 lists the time required to perform the search-
ing step using the the most naive algorithms on the smaller
dataset. Clearly, these naive algorithms take more time
than the numbers presented in the Figures 10 and 11. De-
pending how the data is organized the searching time is
different. If data is organized in a record oriented fashion
like in a relational database system, to search one attribute
effectively requires one to read all pages. The alterna-
tive is to organize the data in an attribute oriented fashion,
i.e., all values of an attribute are together on consecutive
pages. This strategy is suitable for read-only data and is
more efficient for feature tracking. In this case, it requires
about 5 seconds to perform the searching step without an
index. Since the average search step takes about one sec-
ond with the compressed bitmap index, there is a saving
of about four seconds. From Figure 7, we see that gener-
ating one bitmap index for the smaller dataset takes about
77.6 (621/8) seconds. It would take about 20 queries for
the savings of using the bitmap index to equal to the time
needed to create the index. Building the bitmap indices
may not be worthwhile if the data is only searched a few
times.

9

7 Summary and future work

In this paper, we reported a set of compressed bitmap
based techniques for feature tracking. The bitmap in-
dex is known to be efficient for searching read-only data
like those in feature tracking problems. In this paper,
we demonstrate that compressed bitmaps can also be effi-
ciently used to perform region growing and region track-
ing tasks. On uniform grids, our bitmap based approaches
for region growing and region tracking are theoretically
optimal. Our tests on two sets of autoignition data confirm
their efficiencies. On a 33 GB dataset, it takes less than a
minute to process complex conditions involving four dif-
ferent attributes. On the average it only took about 10
seconds.

We have shown that our algorithm for identifying re-
gions of interests has the same theoretical complexity as
the optimal isocontouring algorithm. However, because
isocontouring algorithms can not be directly used in fea-
ture tracking, we did not actually implement any isocon-
touring algorithm. It would be interesting to actually im-
plement one of them and compare the execution time.

We might be able to improve the performance of the
feature tracking process by reordering the grid points so
that the grid is not blocked. This should reduce the size
of the bitmap indices and the space requirement during
feature tracking. The question to be answered is whether
the overhead of reordering is worthwhile.

In this paper, both the analyses and the test data are for
uniform grids. However, the algorithms used can be ex-
tended. For example, the region growing algorithm can be
applied to any regular grid including the nonuniform reg-
ular grid and the rectilinear grid with affecting the com-
plexity (O(s)). The searching step using bitmap index
can be applied on any kind of grid. If the order line passes
through space in a reasonable manner, the bitmap repre-
senting the regions of interest can still be O(s). The al-
gorithms may also be adopted to AMR (automatic mesh
refinement) meshes. However, more work is required to
implement and to verify the approaches.

The compressed bitmap is a compact representation for
line segments. On 3D grids, working with rectangles
or cubes should be more efficient. Developing compact
data structure for these geometric objects might further
enhance the overall performance of feature tracking pro-
grams.

References

[1] C. Bajaj, A. Shamir, and B.-S. Sohn. Progressive track-
ing of isosurfaces in time-varying scalar fields. Technical
Report TR-02-4, CS & TICAM, University of Texas at
Austin, 2002.

[2] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and
evaluation. In SIGMOD 1998. ACM press, 1998.

[3] C. Y. Chan and Y. E. Ioannidis. An efficient bitmap en-
coding scheme for selection queries. In SIGMOD 1999.
ACM Press, 1999.

[4] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Op-
timal isosurface extraction from irregular volume data. In
Volume Visualization Symposium, pages 31–38, 1996.

[5] T. Echekki and J. H. Chen. Direct numerical simulation of
autoignition in non-homogeneous hydrogen-air mixtures,
2003. to be published in Combustion and Flame.

[6] H. G. Im, J. H. Chen, and C. K. Law. Ignition of hydro-
gen/air mixing layer in turbulent flows. In Twenty-Seventh
Symposium (International) on Combustion, The Combus-
tion Institute, pages 1047–1056, 1998.

[7] W. Koegler. Case study: Application of feature tracking
to analysis of autoignition simulation data. In IEEE Visu-
alization ’01, pages 461–464, 2001.

[8] Y. Livnat, H. W. Shen, and C. R. Johnson. A near opti-
mal isosurface extraction algorithm for structured and un-
structured grids. IEEE Transactions on Visualization and
Computer Graphics, 2(1):73–84, 1996.

[9] P. O’Neil. Model 204 architecture and performance. In
2nd International Workshop in High Performance Trans-
action Systems, Asilomar, CA, volume 359 of Lecture
Notes in Computer Science, pages 40–59, Sept. 1987.

[10] P. O’Neil and D. Quass. Improved query performance with
variant indices. In SIGMOD 1997, pages 38–49. ACM
Press, 1997.

[11] H. W. Shen, C. D. Hansen, Y. Livnat, and C. R. John-
son. Isosurfacing in span space with utmost efficiency (IS-
SUE). In IEEE Visualization ‘96, pages 287–294, 1996.

[12] Q. Shi and J. F. Jaja. Efficient techniques for range search
queries on earth science data. In SSDBM 2002, pages 142–
151. IEEE Computer Society, 2002.

[13] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and
A. Sim. Multidimensional indexing and query coordina-
tion for tertiary storage management. In SSDBM 1999,
pages 214–225. IEEE Computer Society, 1999.

[14] D. Silver and X. Wang. Tracking and visulizing turbulent
3D flow. IEEE Transcations on Visualization and Com-
puter Graphics, 3(2):129–141, 1997.

[15] K. Wu, E. J. Otoo, and A. Shoshani. A performance com-
parison of bitmap indexes. In CIKM 2001, pages 559–561.
ACM, 2001.

[16] K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap
indexes for faster search operations. In Proceedings of
SSDBM’02, pages 99–108, 2002. LBNL-49627.

[17] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. Notes
on design and implementation of compressed bit vectors.
Technical Report LBNL/PUB-3161, Lawrence Berkeley
National Laboratory, Berkeley, CA, 2001.

[18] K.-L. Wu and P. Yu. Range-based bitmap indexing for
high cardinality attributes with skew. Technical Report
RC 20449, IBM Watson Research Division, Yorktown
Heights, New York, May 1996.

[19] M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing
for data warehouses. In ICDE 1998, pages 220–230. IEEE
Computer Society, 1998.

10

